

Estructura de Computadores

Tema 4. Representación y Aritmética

REPRESENTACIÓN Y ARITMÉTICA

Introducción

- Representaciones alfanuméricas y numéricas
- Operador y estructura de la ALU

Representación en coma fija

- Binario sin signo
- Complemento a 2
- Complemento a 1
- Signo-magnitud
- Exceso a M

Representación en coma flotante

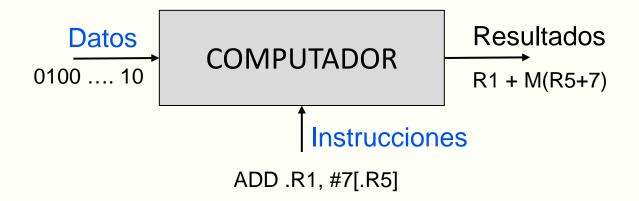
- Definición, rango y resolución
- Normalización y bit implícito
- Suma y resta
- Redondeo y bits de guarda
- Estándar IEEE 754

BIBLIOGRAFÍA

- Fundamentos de los computadores. Pedro de Miguel. Editorial Paraninfo,
 9^a edición, 2004.
- Estructura y diseño de computadores. Patterson-Hennessy. Editorial Reverté, 2000
- Organización y arquitectura de computadores. Stallings. Prentice Hall, 7^a edición, 2006
- Computer Arithmetic Systems. Omondi. Prentice Hall International, 1994
- Estructura de computadores: Problemas resueltos. García Clemente y otros. RAMA, 2006

REPRESENTACIÓN DE LA INFORMACIÓN (1)

INFORMACIÓN QUE LLEGA AL COMPUTADOR



REPRESENTACIÓN DE LA INFORMACIÓN (2)

CONDICIONANTES DEL COMPUTADOR

Circuitos integrados del Computador:

Utilización del Sistema Binario

El computador es Finito:

Las representaciones son **Acotadas**

Diseño de sus unidades funcionales:

Existen **Tamaños Privilegiados** (byte, palabra, ..)

MODOS DE REPRESENTACIÓN

- Representaciones Alfanuméricas
- Representaciones Numéricas
- Representaciones Gráficas
- Representaciones Redundantes
- Representaciones Etiquetadas

REPRESENTACIONES ALFANUMÉRICAS (1)

REPRESENTAN:

- Las 26 letras del alfabeto (Mayúsculas y minúsculas)
- Los 10 dígitos decimales
- Un conjunto de caracteres especiales (+ , = < ...)
- Un conjunto de caracteres de control (no visibles)

CARACTERÍSTICAS:

- Facilidad para comprobar un carácter numérico
 - ASCII: desde H'30 hasta H'39
- Fácil equivalencia Mayúsculas y minúsculas
 - ASCII: desde H'41 (A) hasta H'5A (Z)
 - ASCII: desde H'61 (a) hasta H'7A (z)
- Fácil comprobación si es carácter de control
 - ASCII: desde H'00 (NUL) hasta H'1F (US)
 - ASCII: excepción H'7F (DEL)

TABLA DE CÓDIGOS ASCII

Dígito hexadecimal más significativo

Dígito hexadecimal menos significativo

HEX	0	1	2	3	4	5	6	7
0	NUL	DLE	Space	0	@	P	`	p
1	SOH	DC1	!	1	A	Q	a	đ
2	STX	DC2		2	В	R	b	r
3	ETX	DC3	#	3	С	ន	С	ធ
4	EOT	DC4	\$	4	D	T	d	t
5	ENQ	NAK	%	5	E	ט	е	u
6	ACK	SYN	&	6	F	v	£	v
7	Bell	ETB	1	7	G	W	g	w
8	BS	CAN	(8	н	х	h	x
9	HT	EM)	9	I	Y	i	У
A	LF	SUB	*	:	J	Z	j	z
В	VT	ESC	+	;	K	[k	{
С	FF	FS	,	٧	L	\	1	
D	CR	GS	-	II	М]	m	}
E	SO	RS	•	^	N	^	n	2
F	si	ບຣ	/	?	0	_	0	DEL

REPRESENTACIONES ALFANUMÉRICAS (2)

ASCII 8 bits:

Norma ISO que añade la representación de caracteres no presentes en inglés, p.e.

 \acute{a} es el 0xE1 \acute{A} es el 0xC1

UTF-8:

Codificación de un carácter con varios bytes.

- Codificación de un byte: el carácter es ASCII de 7 bits.
- Codificación de dos bytes: el carácter pertenece a lenguas romances y otras.
 La codificación es:

110000xx 10xxxxxx donde xxxxxxxxx es el carácter ISO de 8 bits.

Ejemplo: Conversión del carácter ISO de 8 bits **á** (0xE1) a UTF-8

11000011 10100001 0xC3A1

- Codificación de tres bytes: el carácter pertenece a lenguas asiáticas.
- Codificación es de cuatro bytes: otros.

REPRESENTACIONES NUMÉRICAS

LIMITACIONES

Número finito de valores representables:

RANGO DE REPRESENTACIÓN:

Intervalo entre el mayor y el menor número representables

Número finito de bits para la representación:

RESOLUCIÓN:

Diferencia entre dos valores representables consecutivos

Operaciones con resultados no representables:

DESBORDAMIENTO:

Cuando un resultado está fuera del rango de representación

SISTEMAS POSICIONALES CON BASE

$$b = base = n^0 natural > 1$$

$$Rep(X) = (... x_2 x_1 x_0 x_{-1} x_{-2} ...) con xi \in \{b-1, b-2, ..., 1, 0\}$$

$$V(X) = \sum_{i=-\infty}^{i=\infty} x_i b^i = \sum_{i=0}^{i=\infty} x_i b^i + \sum_{i=1}^{i=\infty} x_{-i} b^{-i}$$

SISTEMA POSICIONAL: CAMBIO DE BASE (1)

- Conversión de base 10 a cualquier base b
 - La parte entera se convierte mediante divisiones sucesivas por b y
 - la <u>parte fraccionaria</u> mediante multiplicaciones sucesivas por b
- Conversión de base b a base 10

Evaluando directamente la expresión Σ

Ejs:
$$010101,1010_{(2} = ??$$
 $A27,8C_{(16} = ??$

• Conversión de base b1 a base $b2 = (b1)^k$

Cada k dígitos de la representación en b1 constituyen un dígito en la representación en base b2 (ej: b1 = 2 y b2 = 16 o b2 = 8)

Ej:
$$010101,1010_{(2} = ??_{(16} = ??_{(8)})$$

 Un número puede tener una representación exacta en una base y no tenerla en otra

Ej: 13,2₍₁₀ ¿Representación en base 2?

SISTEMA POSICIONAL: CAMBIO DE BASE (1)

- Conversión de base 10 a cualquier base b
 - La parte entera se convierte mediante divisiones sucesivas por b y
 - la parte fraccionaria mediante multiplicaciones sucesivas por b
- Conversión de base b a base 10

Evaluando directamente la expresión Σ

Ejs:
$$010101,1010_{(2} = 2^4 + 2^2 + 2^0 + 2^{-1} + 2^{-3} = 21,625_{(10)}$$

 $A27,8C_{(16)} = 10 \times 16^2 + 2 \times 16^1 + 7 \times 16^0 + 8 \times 16^{-1} + 12 \times 16^{-2} = 2599,546875_{(10)}$

• Conversión de base b1 a base $b2 = (b1)^k$

Cada k dígitos de la representación en b1 constituyen un dígito en la representación en base b2 (ej: b1 = 2 y b2 = 16 o b2 = 8)

Ej:
$$010101,1010_{(2} = 15,A_{(16} = 25,5_{(8)})$$

 Un número puede tener una representación exacta en una base y no tenerla en otra

Ej:
$$13.2_{(10)} = .00110011...0011_{(2)}$$

CAMBIO DE BASE (2)

Ejercicio: Expresar N = $2202,735_{(10)}$ en base 16, 2 y 8

CAMBIO DE BASE (2)

<u>Ejercicio (Solución)</u>: Expresar N = $2202,735_{(10)}$ en base 16, 2 y 8.

$$2202 = 16 \times 137 + 10 \rightarrow x_0 = 10 \text{ (A)}$$

$$137 = 16 \times 8 + 9 \rightarrow x_1 = 9 \text{ y } x_2 = 8$$

$$0.735 \times 16 = 11.760 \rightarrow X_{-1} = 11$$
 (B)

$$0.760 \times 16 = 12,160 \rightarrow x_{-2} = 12$$
 (C)

Seguir hasta obtener el número de dígitos deseado

$$N = 89A,BC..._{(16)}$$

Expandiendo cada dígito hexadecimal en 4 bits:

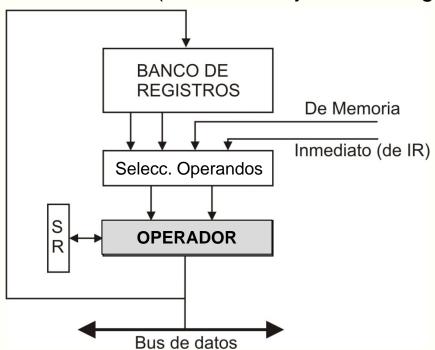
$$N = 1000 \ 1001 \ 1010, \ 1011 \ 1100 \ \dots$$
₍₂₎

Agrupando cada 3 bits en un dígito octal:

$$N = 100 \ 010 \ 011 \ 010, \ 101 \ 111 \ 00?$$
 ₍₂ = 4232,57 ... ₍₈

OPERADOR Y ESTRUCTURA DE LA ALU

- Operador: circuito que realiza una o varias operaciones
- Estructura de la ALU (modelo de ejecución Registro-Memoria)



Registro de estado (SR). Los flags más usuales son: Acarreo (C), Cero (Z), Signo (S), Desbordamiento (V), Paridad (P), Resta (N)

OPERACIONES BÁSICAS DE LA ALU (1)

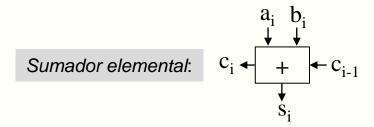
- Operaciones lógicas (NOT, OR, AND, XOR, ...)
 - Actúan sobre los operandos bit a bit:

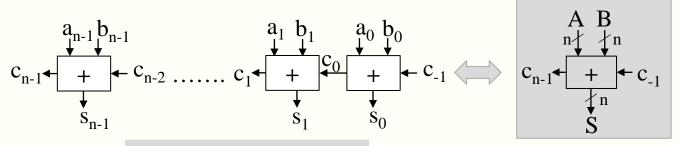
Ej: (1001) XOR (0101) = 1100

- Desplazamientos
 - Lógicos: se rellenan los huecos generados con ceros, ya sean a la derecha o a la izquierda
 - Aritméticos: se realizan sobre enteros con signo. Equivalen a multiplicar por 2 (a la izquierda) o dividir por 2 (a la derecha). Dependen del sistema de representación utilizado
 - Concatenados: entre registros y con biestables (acarreo)
 - Circulares o rotaciones
- Extensión de signo
 - Representar un dato de *n* bits en *m* bits, *m>n*
 - Depende del sistema de representación utilizado

OPERACIONES BÁSICAS DE LA ALU (2)

- Cambio de signo
 - Dado un número A, obtener –A
 - Depende del sistema de representación utilizado
- Suma/Resta
 - Depende del sistema de representación utilizado





Sumador paralelo de n bits

REPRESENTACIONES NUMÉRICAS EN COMA FIJA

- Binario puro (sin signo)
- Complemento a 2
- Complemento a 1
- Signo-magnitud
- Exceso M

Para cada una de ellas, se estudiará

- 1) Representación y valor de un número
- 2) Rango y resolución
- 3) Cambio de signo
- 4) Desplazamiento aritmético
- 5) Extensión de signo
- 6) Cómo se hacen las operaciones (+ y -) y cómo se identifica el desbordamiento

BINARIO SIN SIGNO

1) Rep(X) =
$$(x_{n-1} x_{n-2} x_1 x_0)$$

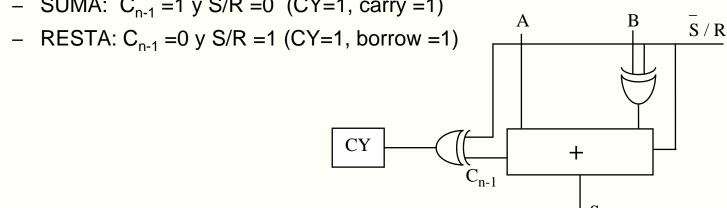
$$V(X) = \sum_{i=0}^{n-1} \chi_i 2^i$$

- 2) Rango = $[0, 2^n-1]$ Resolución = 1
- 3) Cambio de signo: N/A
- Desplazamiento aritmético = desplazamiento lógico
- Extensión de signo = añadir ceros a la izquierda
- Operaciones + y -

A-B = A+
$$[(2^n-1-B)+1] - 2^n = S + C_{n-1} \times 2^n - 2^n$$

Desbordamiento (OVF) a partir de CY (biestable de acarreo)

- SUMA: $C_{n-1} = 1 \text{ y S/R} = 0 \text{ (CY=1, carry = 1)}$



ENTEROS EN COMPLEMENTO A 2 (1)

- 1) Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - Si $x_{n-1} = 0 \rightarrow X \ge 0$, Igual que binario puro
 - Si $x_{n-1} = 1 \rightarrow X < 0$, Rep $(X) = 2^n |X|$
 - $Rep(X) + Rep(-X) = 2^n$

$$V(X) = -\chi_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} \chi_i 2^{i}$$

- 2) Rango = $[-2^{n-1}, -1] \cup [0, 2^{n-1}-1]$ Resolución = 1
 - Rango de representación asimétrico
 - Representación del cero única

Ejemplo: n = 6

- Representar A = $-7_{(10)}$ en ca2, Calcular el valor de B = 101110
- Calcular los valores máximo y mínimo representables

ENTEROS EN COMPLEMENTO A 2 (1)

- 1) Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - Si $x_{n-1} = 0 \rightarrow X \ge 0$, Igual que binario puro
 - Si $x_{n-1} = 1 \rightarrow X < 0$, Rep $(X) = 2^n |X|$
 - $Rep(X) + Rep(-X) = 2^n$

$$V(X) = -\chi_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} \chi_i 2^{i}$$

- 2) Rango = $[-2^{n-1}, -1] \cup [0, 2^{n-1}-1]$ Resolución = 1
 - Rango de representación asimétrico
 - Representación del cero única

Ejemplo (Solución): n = 6

- Representar A = $-7_{(10)}$ en ca2, Calcular el valor de B = 101110
- Calcular los valores máximo y mínimo representables

$$A = 000111$$
 $-A = 1000000 - 000111 = 111001 = 111000 + 1$

$$|B| = 1000000 - 101110 = 010010 = 18, B = -18$$

Valor máximo =
$$0111111 = 2^5 - 1 = 31$$

Valor mínimo =
$$100000 = -2^5 = -32$$

ENTEROS EN COMPLEMENTO A 2 (2)

- 3) Cambio de signo
 - Aplicar el complemento a 2
- 4) Desplazamientos aritméticos
 - Izquierda (x 2): Se rellena el hueco con 0 y hay desbordamiento si cambia de signo.
 - Derecha (/ 2): Se rellena con 0 ó 1 dependiendo de si el número es positivo o negativo
- 5) Extensión de signo

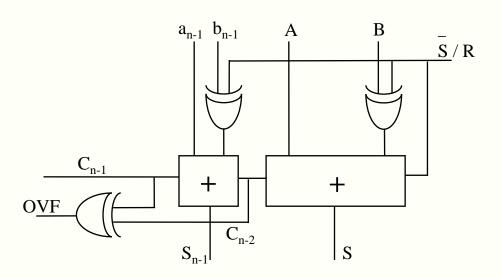
Se rellenan con 0s ó 1s los m-n bits, dependiendo de si el número es positivo o negativo \rightarrow con el valor de x_{n-1}

ENTEROS EN COMPLEMENTO A 2 (3)

- 6) Operaciones + y -
 - Suma

	Α	В	A+B	C _{n-1}	OVF
A+ B+	а	b	a+b	0	S _{n-1} =1 C _{n-2} =1
A- B-	2 ⁿ - a	2 ⁿ - b	2 ⁿ + 2ⁿ - (a+b)	1	S _{n-1} =0 C _{n-2} =0
A+ B- (a>=b)	а	2 ⁿ - b	2 ⁿ + (a-b)	1	NO
A+ B- (a <b)< td=""><td>а</td><td>2ⁿ- b</td><td>2ⁿ- (b-a)</td><td>0</td><td>NO</td></b)<>	а	2 ⁿ - b	2 ⁿ - (b-a)	0	NO

- **Resta**: A B = A + (-B) = A + $[2^n 1 Rep(B)] + 1$
- Análisis de OVF



ENTEROS EN COMPLEMENTO A 1 (1)

- 1) Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - Si $x_{n-1} = 0 \rightarrow X \ge 0$, Igual que binario puro
 - Si $x_{n-1} = 1 \rightarrow X \le 0$, Rep $(X) = 2^n 1 |X|$
 - $Rep(X) + Rep(-X) = 2^{n} 1$

$$V(X) = \chi_{n-1}(1 - 2^{n-1}) + \sum_{i=0}^{n-2} \chi_i 2^i$$

- 2) Rango = $[-(2^{n-1}-1), 0] \cup [0, 2^{n-1}-1]$ Resolución = 1
 - Rango de representación simétrico
 - Doble representación del cero: 000...000 y 111...111

Ejemplo: n = 6

- Representar A = $-7_{(10)}$, Calcular el valor de B = 101110
- Calcular el valor máximo y mínimo representables

$$A = 000111$$
 $-A = 1111111 - 000111 = 111000$

$$|B| = 1111111 - 1011110 = 010001 = 17, B = -17$$

Valor máximo =
$$0111111 = 2^5 - 1 = 31$$

Valor mínimo =
$$100000 = -011111 = -(2^5-1) = -31$$

ENTEROS EN COMPLEMENTO A 1 (2)

3) Cambio de signo

Aplicar el complemento a 1

- 4) Desplazamientos aritméticos
 - Izquierda (x 2): Se recircula el acarreo y hay desbordamiento si el número cambia de signo.
 - Derecha (/ 2): Se rellena con 0 ó 1 dependiendo de si el número es positivo o negativo (Igual que en ca2)
- 5) Extensión de signo

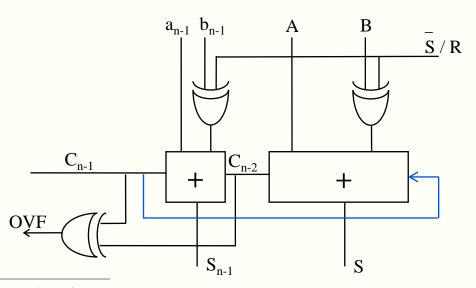
Se rellenan con 0s ó 1s los *m-n* bits, dependiendo de si el número es positivo o negativo (Igual que en ca2)

ENTEROS EN COMPLEMENTO A 1 (3)

- 6) Operaciones + y -
 - Suma

	Α	В	A+B	C _{n-1}	OVF
A+ B+	а	b	a+b	0	S _{n-1} =1 C _{n-2} =1
A- B-	2 ⁿ -1- a	2 ⁿ -1- b	2 ⁿ -1 + 2ⁿ-1-(a+b)	1	S _{n-1} =0 C _{n-2} =0
A+ B- (a>=b)	а	2 ⁿ -1- b	2 ⁿ -1 +(a-b)	1	NO
A+ B- (a <b)< td=""><td>а</td><td>2ⁿ-1- b</td><td>2ⁿ-1-(b-a)</td><td>0</td><td>NO</td></b)<>	а	2 ⁿ -1- b	2 ⁿ -1-(b-a)	0	NO

- **Resta**: A B = A + (-B) = A + $[2^n 1 Rep(B)]$
- Análisis de OVF



ENTEROS EN SIGNO-MAGNITUD

- 1) Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - $x_{n-1} = bit de signo$
 - $\bullet \quad x_{n-1} = 0 \longrightarrow X \ge 0 \ y \ x_{n-1} = 1 \longrightarrow \ X \le 0$

$$V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} x_i 2^{i}$$

Rango y resolución: igual que en complemento a 1

Ejemplo: n = 6

- Representar A = $-7_{(10)}$, Calcular el valor de B = 101110
- Calcular el valor máximo y mínimo representables

$$A = 000111 \rightarrow -A = 100111 \quad B = -14 \rightarrow -B = 001110$$

- 3) Cambio de signo
- 4) Desplazamientos aritméticos

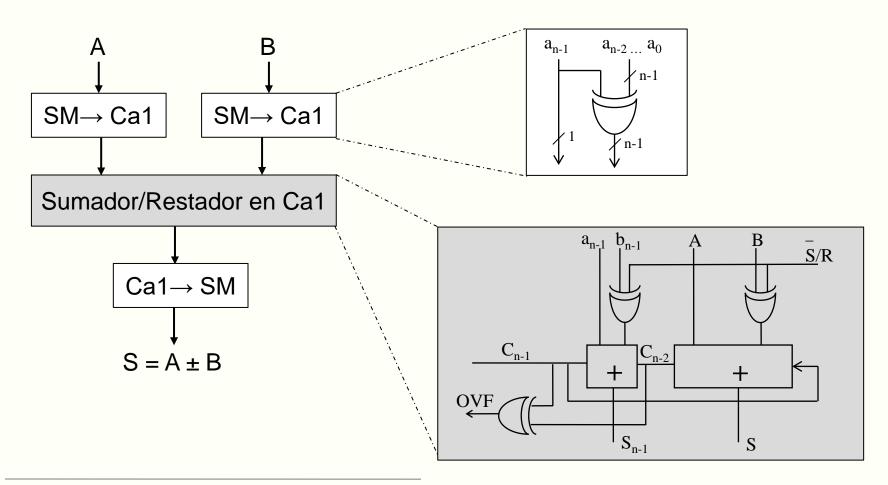
ENTEROS EN SIGNO-MAGNITUD (2)

- 5) Extensión de signo
- 6) Operaciones de suma y resta
 - Suma A+B=(-1)^S×M, siendo A=(-1)^{SA}×MA y B=(-1)^{SB}×MB, y utilizando un sumador en binario sin signo:

- **Resta**: A - B = A + (-B)

ENTEROS EN SIGNO-MAGNITUD (3)

Operador de suma y resta utilizando un sumador/restador en Ca1



ENTEROS EN EXCESO A "M"

- 1) Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - Rep(X) = V(X) + M

$$V(X) = \sum_{i=0}^{n-1} x_i 2^i - M$$

- Normalmente M=2ⁿ⁻¹ o M=2ⁿ⁻¹-1 (el utilizado en el estándar IEEE)
- 2) Rango = $[-M, -1] \cup [0, 2^n 1 M] = [-2^{n-1}, -1] \cup [0, 2^{n-1} 1]$ Resolución = 1

Ejemplo:
$$n = 6$$
, $M = 2^{6-1} = 32$

- Representar A = $-7_{(10)}$, Calcular el valor de B = 101110
- Calcular el valor máximo y mínimo representables

$$A = -7+32 = 25 = 011001$$
 $B = 101110 - 100000 = 14_{(10)}$

Valor máximo =
$$1111111 = 63 - 32 = 31$$

Valor mínimo =
$$000000 = 0 - 32 = -32$$

- 3) Cambio de signo
- 4) Desplazamiento aritmético
- 5) Extensión de signo
- 6) Suma y resta

REPRESENTACIÓN EN COMA FLOTANTE (1)

- $V(X) = M \times r^{E}$ (notación científica)
 - M = mantisa o fracción (p bits)
 - r = base o radix
 - E = exponente (q bits)
- $Rep(X) = (e_{q-1} e_{q-2} e_1 e_0 m_{p-1} m_{p-2} m_1 m_0)$

CARACTERÍSTICAS:

- Normalmente $r = 2^k$ (r = 2, 8, 16)
- Mantisa: coma fija con signo y base r
- Exponente: Entero y base 2

REPRESENTACIÓN EN COMA FLOTANTE (2)

Ejemplo:		Exceso 64	Signo-magnitud	
	S	EXPONENTE	MANTISA	
	1	7	0	

- Rango Exponente = [-64, 63]
- Rango Mantisa:

- Rango = $\pm [2^{-8} \times 2^{-64}, (1-2^{-8}) \times 2^{63}] \cup 0$
- Resolución = $2^{-8} \times 2^{E}$
- A = H'C63C = 1 1000110 ,00111100 $V(A) = -,00111100 \times 2^{6} = -15_{(10)}$ $V(A) = -,01111000 \times 2^{5} = -15_{(10)} \rightarrow A = H' C578$ $V(A) = -,11110000 \times 2^{4} = -15_{(10)} \rightarrow A = H' C4F0$

REPRESENTACIÓN EN COMA FLOTANTE (3)

Normalización

Un número en coma flotante está con su mantisa normalizada si al desplazar la mantisa un dígito a la izquierda y decrementar el exponente en 1 cambia el valor del número

	Exceso 64	Signo-mag. Normalizada
S	EXPONENTE	MANTISA
1	7	8

Rango Mantisa normalizada:

$$10000000 = 2^{-1}$$
.....
 $111111111 = 1-2^{-8}$

- Rango = $\pm [2^{-1} \times 2^{-64}, (1-2^{-8}) \times 2^{63}]$
- Problemas de la normalización:
 - Resultados de operaciones no normalizados
 - El cero no es representable

REPRESENTACIÓN EN COMA FLOTANTE (4)

Bit Implícito

A un número en coma flotante con r=2 y su mantisa en signo magnitud y normalizada, puede dejarse el bit más significativo como implícito ya que tiene que ser un 1

	= /(0000 0 .	
S	EXPONENTE	MANTISA
1	7 ,i	8

Rango Mantisa:

- Rango = $\pm [2^{-1} \times 2^{-64}, (1-2^{-9}) \times 2^{63}]$
- Resolución = 2⁻⁹ x 2^E

SUMA Y RESTA EN COMA FLOTANTE (1)

Solución analítica:

A = MA × r ^{EA} B = MB × r ^{EB}
r = 2 ^k; Las mantisas MA y MB normalizadas

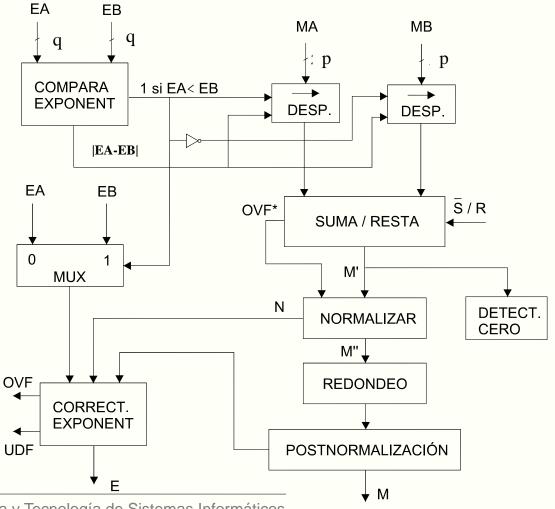
$$si$$
 EA ≥ EB siendo d = EA – EB
A ± B = (MA ± MB × r ^{-d}) × r ^{EA}
 si EA < EB siendo d = EB – EA
A ± B = (MA × r ^{-d} ± MB) × r ^{EB}

Pasos a seguir:

- 1. Comparar exponentes
- 2. Desplazar mantisa de exponente menor a la derecha
- 3. Sumar / Restar mantisas
- 4. Si el resultado es cero FIN
- 5. Normalizar mantisa (si redondeo postnormalizar)
- 6. Ajuste del exponente
- 7. Detectar desbordamiento

SUMA Y RESTA EN COMA FLOTANTE (2)

Esquema del sumador/restador en coma flotante:



SUMA Y RESTA EN COMA FLOTANTE (3)

1. Comparar exponentes

- Identificar mantisa a desplazar
- Determinar el número de desplazamientos = |EA-EB|
- Utiliza un restador (puede haber OVF en esta resta)

2. Desplazar mantisa de exponente menor

- Desplaza |EA-EB| dígitos
- Desplazamientos aritméticos

3. Sumar / Restar mantisas

- Depende de la representación de las mantisas
- Depende del operador que se utilice
- Puede haber OVF* → hay que normalizar

4. Detectar resultado cero

- Se detecta con el flag, Z=1
- Se devuelve la representación definida para el cero

SUMA Y RESTA EN COMA FLOTANTE (4)

- 5. Normalización (mantisa signo y p bits de magnitud)
 - OVF*=1: desplaza dcha. M' y E ← E+1
 - OVF*=0: desplaza izda. M' y E ← E-x (x=0,1,...,p-1)
 - N=1,0,-1,...,-(p-1)=cantidad a sumar al exponente mayor
 - Si redondeo y postnormalización : desplaza dcha. M' y E ← E+1

6. Corregir exponente

- Seleccionar el exponente mayor
- Sumar N (de la fase de normalización)
- Sumar 1 si hay postnormalización tras el redondeo

7. Detectar desbordamiento

- Si E > Exponente mayor, hay overflow (OVF)
- Si E < Exponente menor, hay underflow (UDF)

REDONDEO

Ejemplo:

 $A=\pm M\times 2^E$ donde M está representada por 6 bits. Se ha obtenido un resultado de 10 bits M=,100100 1011 que ha de ajustarse a 6 bits mediante **técnicas de redondeo**:

- Truncamiento: Suprimir los bits sobrantes. M=,100100. Error absoluto $\epsilon_a < 2^{-6}$ siempre por defecto
- Forzado a 1: Truncamiento dejando siempre a 1 el bit menos significativo. M=100101. Mismo error absoluto que en truncamiento, pero por defecto y por exceso
- Redondeo al más próximo: Ajustar al valor M_{i-1}=,100100 ó al M_i=,100101 más próximo sumando la mitad del intervalo, ½(M_i-M_{i-1}) = 000000 1000. M=,100101. Error absoluto ε_a ≤ 2⁻⁷ por defecto y por exceso
- Redondeos a cero, a +∞ y a -∞ : Ajustar al extremo M_i ó M_{i-1} que corresponda en la dirección (M a 0), (M a +∞) y (M a -∞), respectivamente

DÍGITOS DE GUARDA Y BIT RETENEDOR (1)

- Dígitos de guarda: dígitos añadidos a la mantisa para obtener la precisión máxima. En el caso de mantisa en signo-magnitud se necesitarían dos bits de guarda, uno para normalizar el resultado y otro para redondeo
- Bit retenedor: bit que se añade para propagar el borrow en la resta. Al realizar los desplazamientos en la mantisa de menor exponente en la operación suma/resta, el bit retenedor se pone a 1 en el momento que pase un 1 y permanece ese valor independientemente de los bits que pasen después

Ejercicio: Mantisa normalizada en signo magnitud (1 bit de signo y 6 de magnitud) y exponente de 5 bits en exceso a 16.

$$A = ,100001 \times 2^7$$
 $B = ,100101 \times 2^3$

Realizar A-B

- 1) Usando todos los bits necesarios para absorber todos los desplazamientos
- 2) Con dos bits de guarda y
- 3) Con los dos bits de guarda más el bit retenedor

DÍGITOS DE GUARDA Y BIT RETENEDOR (2)

SOLUCIÓN

Resultado con 4 bits adicionales:

Resultado con 2 bits de guarda:

A = ,100001 00
$$\times 2^7$$

B = ,000010 01 $\times 2^7$
A-B = ,011110 11 $\times 2^7$
Normalización ,111101 1 $\times 2^6$
Redondeo + 1
A-B = ,111110 $\times 2^6$ = D'62

DÍGITOS DE GUARDA Y BIT RETENEDOR (3)

Resultado con 2 bits de guarda y bit retenedor:

Resultado exacto y errores:

$$A = ,100001 \times 2^7 = D'66$$
 $B = ,100101 \times 2^3 = D'4,625$ $A-B = D'61,375$

- Error con 2 bits de guarda = |61,375 62| = 0,625
- ightharpoonup Error con bit retenedor = |61,375 61| = 0,375

ESTÁNDAR IEEE 754 DE COMA FLOTANTE (1)

S	Exponente	Mantisa
1	p 1	q q

- Características generales (salvo casos especiales)
 - Exponente en exceso 2^{p-1}-1
 - Mantisa en signo-magnitud, normalizada, con bit implícito y la coma a la derecha del bit implícito

Diferentes formatos.

• Simple precisión (32 bits) (p = 8, q = 23)

Doble precisión (64 bits) (p = 11, q = 52)

• Cuádrupe (128 bits) (p = 15, q = 112)

ESTÁNDAR IEEE 754 DE COMA FLOTANTE (1)

Formato en simple precisión

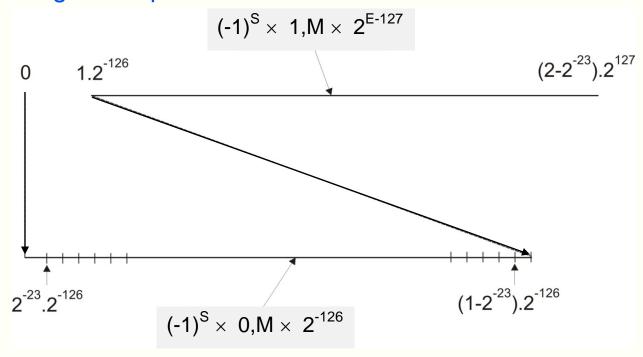
	Exceso 127	
S	Exponente	Mantisa
1	8 1	, 23

$$V(X) = (-1)^{S} \times 1, M \times 2^{E-127}$$

Combinaciones, valores de los exponentes y casos especiales:

ESTÁNDAR IEEE 754 DE COMA FLOTANTE (2)

Rango de representación:



Precisión:

- 3 Bits adicionales (2 de guarda y 1 retenedor)
- Redondeos al más próximo, a +∞, a -∞ y truncamiento